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ON THE CYCLIC BEHAVIOR OF RANDOM TRANSFORMATIONS
ON A FINITE SET

by
Alan E. Gelfand

1. Introduction

Let X = {xl,xz,...,xn} be a set of n elements and let
J be the set of all transformations from X into itself. For
T ¢ J we take Tk to have 1ts usual meaning. Suppose for any

Xx € X we look at the sequence TJx » J = 0,1,2,... (Tox

x) .

Since X 1s finite, given an arbitrary initial element, the
sequence TJ must eventually encounter an element it had shown
before. Doing so, it must thereafter repeat the intermediate
sequence of elements. Such a sequence of elements 1s called a
cycle. The number of distinct elements in the cycle is called the

cycle length. For a given x and a given T there will thus be

one and only one cycle, say of length r (which we may call the
cycle associated with x ). Then for any x' on this cycle

™ %" = x' , m=0,1,2,... .

But for a given T not all elements in X must be on a cycle.
Some elements may be transient in that they occur during a run-in
period prior to T falling into a cycle. Moreover, starting from
differing x's may lead T to fall into differing cycles, 1.e.
there may be many cycles associated with T . This leads to the

notion of a cycle space for T . The number of cycles is obviously




between 1 and n as 1s the number of cyclic elements (i.e.,

elements on some cycle).

For the transformation T with n = 10 given by

we may graphically describe the cycle space as

X3 X
+ /N"

It is the purpose of this paper to develop a collection of
results which effectively déscribe the cycle space of a randomly
selected T . The application of these results to the study of
systems having a finite number of states 1s apparent and for this

reason we will use the term "state" interchangeably with the term

"element."

The extant literature in this area is quite limited. Gontcharoff

in some early work considers the distribution of cycles in permuta-
tions of a finite number of elements. Rubin and Sitgreaves, in a
very long and detalled article, consider some aspects of the cycle
space without formally recognizing it. Harris extends their work
and includes some results discussed here but obtained from a differ-

ent point of view. Katz and his student, Folkert, examine the




expected number of cycles. Cull studies the problem in a system

setting (in particular, using binary switching nets although to
no particular advantage) and develops some results (with a few
errors) on the expected number of cycles and cyclic states.

Our format, then, is as follows. In section 2 we formalize
the problem developing convenient notation and definitions. In
section 3 we introduce random transformations. In section 4 we
demonstrate the advantage of viewing the problem in terms of
square arrays of row-exchangeable variables. In section 5 we offer
exact results for fixed n and in section 6 we present some

attractive asymptotic results.

2. The Setup

Consider again a finite set X with elements XysXopeeesX .
Any transformation T €¢J from X into itself may be given a
matrix representation through an nxn transition matrix which we

shall also denote by T . That is

1l 4if state x1 18 the successor to state x
i.e. TxJ = x

0 otherwise.

J°
i
1J

By definition T has exactly one "1" per column. Suppose
T results in a cycle space having k transient elements and m
cycles of lengths rl,rz,ra,...,rm , respectively. Consider the

characteristic polynomial of T , |T - AI| where operations are

R R s s o,
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performed in the real field. It is straightforward to show that

this polynomial will have the form

(see Cull for further details).

In the T matrix we can see that we have T =1 1i.f.f.

i1
state 1 1s on a cycle of length 1. Thus Tr(T) gives the number

of elements on cycles of length 1. Extending this notion it is

apparent that
(1) Tr(T™) = number of states on cycles whose length divides m .
L
Hence Tr(Tn') equals the number of states on cycles and
L
n - Tr(Tn‘) equals the number of transient states.
It 1s of interest to obtain a matrix Am from T such that
Tr(Am) s number of states on cycles whose length is exactly m .

Let

Cm = {primes < m which appear in the prime representation of m}
(1.e. appear with a power > 1)

and let

Nm = number of elements 1in Cm .

4
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N
The number of subsets of Nm is 2 n and the number of subsets

N
(k HS Nmk . At aNgiven k let J 1index the

subsets of size k so that the 2 ™ subsets may be denoted by

of size k 1is My

CkJ s kK = 0,1,2,...,Nm s J = 1,2,..., Nmk . Let ng egual m
dived by the product of all the elements in ckJ . Then

Theorem. For each m , m= 1,2,...,n , let

Nm ok Nmk ng
k=0 J=1

Then Tr(Am) = number of states on cycles whose length 1s

exactly m .

Proof. The most direct proof employs a stralghtforward, but

tediocus, inclusion-exclusion argument.

3. Random Transformations.

Consider now the selection of a random (equally likely) trans-
formation T from .7 . This selection is conveniently accomplished
as a sequence of n independent multinomial trials where the Jth
trial chooses the successor to state J 1in an equiprobable fashion
from amongst the n elements in X . This approach clearly results

n

in an equiprobable selection of the n elements in J .

Then Tr(T) , the number of states on cycles of length 1, 1s
obviously distributed as binomial (n, %) with E(Tr(T)) = 1 ,

var(Tr(T)) = (n-1)/n . The probability that T has no cycles of
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length 1 is ((n-1)/n)" ; the probability that state 1 1s a successor
state is 1- ((a-1)/0)" . As n + = these probabilities tend to
el and 1-e? , respectively. More generally the limiting dis-
tribution of Tr(T) 1is Poisson (1).

We now examine the nature of the cycle space of a random
transformation. In particular, we pose the following questions.

(1) What 1s the probability that state Xy is on a cycle of

length r ?

(11) What 1is the Jjoint probability that state x is on a

i
cycle of length r and state xJ is on a c¢cycle of

length s ?

(111) What is the expected number of cycles of length r and
the expected number of states on cycles of length r ?
(iv) What is the distribution of the number of cycles of
length r and of the number of states on cycles of
length r ?

(v) What is the Join; distrivbution of the number of cycles of
length r and the number of cycles of length s ? of the
number of states on cycles of length r and the number of
states on cycles of length s ?

(vi) What 1s the expected number of cycles and the expected
number of states on cycles?
(vii) What is the distribution of the number of cycles and of

the number of states on cycles?

(vii11) What 1s the expected length of a cycle?




to all of these questions.

| Sitgreaves and by Cull.
Tr(Am)
directly.

a sequence of square arrays can be employed advantageously in

In what follows we shall provide exact or asymptotic answers

Some aspects of this distribution theory

(e.g. (iv), (vii) and (viii)) have been studied by Rubin and

as in (1) and (2) are extremely difficult to examine

answering the above questions.

4, Square Arrays.

For a set X of n

Jd consider the

elements and T

nxn array of random variables.

n n
Dll ® e 0 08 00 Dln

However, the distribution of Tr(Tk) and

In the next section we will show how an approach using

selected at random from

n n
(3) Dzl 0 009 00 D2n
% n n
f Dnl ® 8 0 0000 Dnn
: where
: o = { 1 1if state x, 1s on a cycle of length
ri 0 otherwise.
From this array we are interested in the following variables.
n n
(4) S = I D = number of states on a cycle of length r
n,r 4, ri




(5) Tn,r = Sn,r/r = number of cycles of length r

n
6) c®= ¢ D" = { 1 1if state x, 1s on a cycle

i r=]1 ri 0 otherwise
n n n
(7) U = g 8 = I C, = number of stateg on cycles
n p=1 DT 1=1 i

(8) v.= ¢ T p = number of cycles.

Note that while a row sum (Sn r) may exceed 1, by definition
’
!

3 are still 0-1 random variables. In fact,

P(C? = 0) 1s the probability that state 1 4s transient.

the column sums (C

For any fixed r the Joint distribution of D?l,...,Dgn or

of any subset will be that of a collection of dependent interchange-

able random variables. The marginal distribution of any Dgi is

given by

(9) P(Dgi = 1) = P(state Xy is on a cycle of length r)

(n),

n-l)(r-l)! 1
r

= (
r-1 nr n

=L
n

where (n)r is the falling factorial of r terms starting at n
Thus we immediately have E(Dgi) and var(Dgi) and may note that
a8 n + » both tend to 0.

We can immediately obtain the expectation of the variables in

(4) through (8), 1.e.

(20) (S, ) = (n)/n"




—

(11)  E(T, ) = 5 (n) /n"

(12) E(c) =1 I (n) /n"
n r
(13) E(Un) = kfl (n)r/n
1) E(v) = t L (n)snT
n =1 T r

The 1limits of (10) and (11) are clearly 1 and 1/r ,
respectively. By truncating the sums at arbitrary m and letting
n+ e, the 1limits in (13) and (l4) are both seen to be = . For
(12) the 1imit 1s 0 , i.e. fixing m < n we have

1 2 (“)r g lmEl (n)r . (n)m g (B=myr-m
n r —n r m+l n
r=l n i=1 n n r=m
L M-l (n) (n) 1 - (Rmyn-mel
< 1 ro, m n
-n i=1 nr nm+l 1 - (n;m)
m-1 (n) (n)
irl—" rr + mm [1 - (1 - E)"'ﬂl"‘l] .
i=1 n mn

As n + = the right-hand side approaches % (1 -¢e™ . But
m 1is arbitrary so that the limit of the left-hand side must be O .

The interpretation of these limits is that (i) the probability
of any particular state being on a cycle tends to 0 with increas-
ing number of states, but (1i1) the expected number of cyclic states

and expected number of cycles tends to « with increasing number of

states.
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Consider the joint distribution of any pair, D

n n

ri * Pgy -
We have three cases: (1) r# s , 1 #), (11) r=s , 1 #3 ,
(111) r ¥ s , 1 = § .

For (1) we have

1 (n)r‘+s +
n _ n . nin-l) ——F7s r+sc<n
(15) P(Dri 1, DsJ 1) = nT+s
0 s, P+ 5>n
For (i1) we have
(n) (n)
{(r-1) ro, 1 2r op <
n n . « | n(n-1) " r n{n-1) 2r * T Lh
(16) P(Dri 1, DrJ 1) n n
(n)
(r-1) r
n(n-1) nT » 2r > n

For (111) we have two exclusive events so that

an P(D:1 =1 , Dgi =1)=0 .

In each case using (9) we may obtain expressions for the three

remaining Joint events.

Continuing we have in case (1)

1 (n)p.q.s _ 1 (n)r(n)s r4+s<n
(18)  cov(DL, , DZJ) « [ B(AIY T T¥s T 27 v <
(n)_(n)
1 r ’s
- n2 nl‘*s , r+8>n

10




in case (11)

2
r-1 (")r + 1 (")2r 1 [(n)r] or <
n -n n(n-1) _r n(n-1)y ~ 2r ~ 2 2r » crLnm
(19) cov(Dri’DrJ) = n .n n
2
{(r-1) (n),, 1 ((n).] op »
n{n-1) ot - n2 n?r » cr > n
and in case (1ii)
(n)_(n)
n n 1 r S
(20) COV(Dri,Dsi) s - ;5 ——r:’-.—_-*?— .

|
In all cases these covariances tend to 0 as n + = , a fact [

which could be inferred without computation from the Cauchy-Schwarz i

inequality and (9).

Hence ;
}
(n) (n)_(n) ;
r+s r-’s .
- - » Y ¥8 ,r+s8<n :
(21) °°v(sn,r’sn,s) ans nr*s
(n)_(n)
- —5 s, T ES ,r+s5>n
n

S
(22) °°v(Tn,r’Tn,s) - c°V(Sn,r’Sn,s)

STV

)y, (Mg [(m))2

r - 2r < n
(23) var(s ) = n’ n°T nr ’ -
e (n). [(n) 12
n n
] rr - 2§ » er>n
n n
1
(24) var(Tn’r) ] —;5 var(sn’r)




n (n) n (n) 2 (n)
- (28) var(Vn) =1 % rr -z % __FE ) + 12 is rizs .
i r=] n r=1 n r,s>1 n
r+s<n
From these expressions it is clear that S and S
n,r n,s

(also Tn p and Tn s ) are always negatively correlated but

asymptotically uncorrelated. Also lim var(sn r) = r ,

n + o ’
lim var(T ) = 1/r . It is also apparent that 1im var(CZ) = 0
n-+o n,r . n <+

and thus that 1lim cov(Cg,C?) = 0 . Finally, var(Un) and var(Vn)

n+ o
both tend to «® as n + » , as will be most easily seen from results
in section 6.

Extending cases (1), (11) and (1i11) above, consider any subset
of size m of the D:1 « Suppose first that all m variables are
in the same row of (3). Taking mr < n and recognizing the exchange-
ability of the variables, we seek

n

= n = n = =
Poom,r P(Dml sz-... Dm“l 1)

= P(states X_ ,X_ ,...,X are each on a cycle of !
a,’"a, ay

length r).

12
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To obtaln an expression for this probability, consider all
possible partitions of m with no part greater than r . 1If a

given partition has parts ml,...,mJ » let n(ml,...,m ) be the

J
number of ways to allocate m distinct objects into J like cells

J
with m, incell 1 (Iy_, m =m) . Also assoclate with

My sMyseeesmy the event Anr(ml”"’mj) defined by ({states

X seeeyX on the same cycle of length r , states x 2eeey
a a a
1 my m1+1

X on the same cycle of length r , ete.}. If z&\ is the
“ml+m2

set of all partitions of m and 14; r 1s the set of all partitions
b}

of m with no part greater than r , then

(29) Pn,m,r =1 n(ml,...,mJ) P(Anr(ml,mz,...,m ))
m,r J
with
- 3 -1
(30 Plhnin my,..m, )) Z—T' (n), . 73 [(r-1)t) [1-'-'1(’ m )]

Using (29) with appropriate subsets of size m-1 , we may in

principle obtain the complete joint distribution of the m D?a .
i
If on the other hand the m D:i are all in the same column of

(3), say D: 1""’02 { in accordance with (17) their(J?int dis-
1l m n
1 a
tribution will be multinomial with associated P“J = "U}l ,
n

J=1,...,m.

Extending the above ideas, we may obtain the joint distribution

of any subset of size m of Dgi .

13




5. Exact Distributions

Returning to the variables in (4) - (8), we have already noted
that C? is a 0-1 variable with success probability given by (12).
Next we obtain the exact distributions of Un following ideas
given by Rubin and Sitgreaves. Given T , for any x € X , we can

define the set of all successors to x , S(x) , 1i.e.
S(x) = {x': T'x = x' for some r > 0}.

By definition x € S(x) and S(x) 4includes all the cyclic
states associated with x (although x 1s, of course, not necessary

cyclic). Then with k> r + 1

P(x has k successors, S(x) has cycle of length r, x is not cyclic)

= P(Tx # x ; sz # Tx , T2x £ x ; T3x # sz R T3x ¥ Tx , T3x £ x;

k-1y ’ Tk'zx,...,Tk’lx A x; ™x = Tk'rx)

« 0zl on=2 o n- (k1) 1
n n et n n
) (n)k
k+l °

Thus
P(S(x) has cycle of length r, x 18 not cyclic)
(31)
. g (n), .
R=r+l nk+1

14




P(S(x) has cycle of length r, x 1s not cyclic)

n
= I P(S(x) has cycle of length r, x is not cyclic, Un = u)
u=r
n
= § P(S{x) has cycle of length r|x 1s not cyclic, U u)
us=r
P(x is not cycliclUn = u) P(Un = u)
n
- , u=1 . u-2 u-(r-1) 1 , h-u -
uir(l u u-l °** u-(r-2) u-(r-1) ) n P(Un u)
n
(32) = ¢ Y pu_=u).
u=p MY n

Now (31) and (32) are equal for all r implying

n (n) n (n) n
k k n-u n-u
I —_— - X — = I —— P(U =u) - T — P(U_ = u)
k=r+l nk+1 k=r+2 nk+1 u=yr nu n us=r+l nu n
from which
(n)uu
(33) P(Un'u) =n—url‘—,u'l,2,...,n .

From (33), P(Un = n) = i% . This 1is seen directly by noting
that Un = n 1.f.f. T 1s 1l-1 and that there are n! such T .
Harris offers an alternative development of (33) by decomposing the
cycle space of T and employing a convenient ldentity from Katz.

Using (33) we have the identity

n (n)

(34) r —3

=
u u n

u=l n




Taking the mean of Un from (33) and equating to (13) we have

the identity

' n (n) n {(n)
- (35) z u“ = % z u“ u? or n E(—%—) = E(U) .
= usl n us=l n n
i Continuing in this fashion, from (27) we have
f
i
| 5 n (n)u n (n)u
s (36) E(Un) = L (2“-1) = 2n - L __IT— or
. u=1 n u=l n
E(UZ) = 2n - E(U_)
n n
and hence the 1identity
n (n)uu3 5 n (n)u > n (n)u >
(37) I —y— =2n" -n I —=2n° - I —(u" .
u=sl n u=l n u=l n

Note that n'lE(Uﬁ) - 2.

The exact distribution of Vn i1s obtained from Un by

. n
P(V, =v)= I P(V = vlun = u) P(U, = u)

u=v

(38 n (n)uu

38) = I a (u,v) —/ .
usy D v LuFT

But it 1is clear that a does not depend upon n . It is

Just the probability of exactly v cycles resulting from u cyclic
elements. In fact, we may show (Riordan p. 70-72) that

| acu,v) = (-1)*" s(u,v)/ut

where s8(u,v) are Stirling numbers of the first kind.

16
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a(l,l) = 1
a(2,1) = 1/2 a(2,2) = 1/2
a(3,1) = 1/3 a(3,2) = 1/2 a(3,3) = 1/6

More gemerally a(u,1l) = % , afu,u) = %T and using the familiar recurrence

relationship for Stirling numbers of the first kind (Riordan p. 33)

(39) a(u,v ) = “u-‘—l a(u-1,v ) + %-a( u-1,v-1 )

Rubin and Sitgreaves tabulate ¢(u,v) for u,v =1,2,...,25, u<v.

The distribution of Vn is obtained in a more complicated

form than (38) by Folkert using the aforementioned Katz 1dentity.
Using (14) and (38) the identity (40) ensues

no, (n)u n n (n)uuv
(40) P 5w = t U aluy) —p57
us=l n v=l u=y n
n (n) u
s ¥ uu ;’l—] £ va(u,v)
u=l n v=]
Next the exact distribution of T (equivalently S
n,r n,r
since P(Sn,r = kpr) = P(Tn,r = k) ) 1s obtained from Un .
: |
P(T = k) = I P(T = k|U_ = u) P(U_ = u)
n,r u=kr n,r n n
. n (n)uu
(41) = T B_(r,k,u)e .
uskr n nu+1

17




Now B8 does not depend on n ., It is just the probability

of exactly k cycles of length r resulting from u cyclic

elements. It i1s not hard to show that

(41) Blr,k,u) = — 8(r,0,u-kr) .
kir
{w/r)
Since B8(r,0,w) =1 - £ B(r,k,w) and since B8(r,0,w) =1

k=1
» B(r,k,u) can be obtained recursively. Also
g(r,1,r) = a(l,r) = 1/r

when w < r

and B8(1l,r,r) = a(r,r) = 1/r!
It 1s apparent that with the exception of Un » these exact

distributions are a bit inconvenient. In the next section we obtain

some simple asymptotic distridbutions.

In concluding this section we examine the expected length of

a cycle denoted by FCL. We first compute the likelihood of any

particular cycle space configuration under a random T .
let m

If we
N be the number of cycles of length ¢ , ¢ =1,...,n , and
= - I =
let mo n mlg

Im,%2 < n

the number of transient states, then for

P(ml cycles of length £ and my transtient states)

z P(ml,mz,...,mn)

- P(ml,...,mzlun-n-no) P(Un-n-no)

(n)

1 n-no(n-o)
“ o n-m, m, n-a,~-1
ﬂ'onm! I 02 % n 0
f=] f=1

18




n! (n—mo)
" a-m m, n-m n-m_+1
i 0 L % 1 0 m”! n 0
] =1 =1

Gisen any vector (my,...,m ) such that m,2 > 0 and

the average cycle length for the cycle space configuration
1t defines is (Im)™! Im,2 .

Zmll i W

Hence

(43) ECL = I (Zmz)'l Im%  P(my,m,,...,m )

{ (ml,mz, .o ,mn)stmzf_l,mzio}

Continuing we note that Im,¢ 1s a value of U, and Im, 1s

a value of Vn and thus

U
ECL = E (Vﬁ) .
n

e T—— Y Y PTTYT

Using the joint distribution of U , V  contained in (38), we

have

n n (n) u n u (n) u
(44) ECL= I I Sa@uyv) —2—= § I

u u
- u(u'v ) -—T .
v=] u=sy v nu+1 u=]l vsl v nu+




w—-w

AR

i

The equality of the right hand sides of (43) and (L4) provides
yet another identity. A more convenient expression for studying

FCL may be obtained using the recursion relation (39). That is,

n u (n)uu
E(V) = I I va(uv) —=
n u=]l vs=] nu+1
]
n u (n)u
= I I vi(u-1)a(u-1,v) + a(u-1,v-1 )] -«
u=l v=l nu+i
n (n)u
= ufl ;UTT * {(u-1)E(v|u-1) + E(v+l|u-1)}
n (n) n (n)
u u
= ufl n_u'ﬁ + ufl r?l-q u E(v|u-1)
v
- E(—i_ 1 gl . _n
E( Un) + n E{n Un) (Vn + Un ﬂ .

After some simplification we have

' (U _+1)V
E(U_n) - E[_n__._.&]- E(_l_) .
n

Using (35) we obtain

'
ny o 1 -
(45) E(q) = !z(unvn +vV un)
whence
-1
(46) ECL > n{E(U V  + V -U)] .

20




6. Asymptotic Results f

Using Harris' idea (p. 1047) we obtain the asymptotic probability
density of Un . Letting wn = Un/ vyn and using (33) we may show
, after some manipulation that wn converges in distribution to a

! random variable W having a Rayleigh distribution, i.e. the density
of W 1is

-w2/2
u7) fw(w) = we , W > 0.

P
This also establishes that Un > o

It is easy to show that

E(WF) = 2772 r(%g) ,r > =2 .

‘ Thus for k > =2

-x/2 .k k/2 D u* (n Yo k/2 . k2
E(n Un) = n Zl Y S + 2 r(—E— .
us= n

In particular from (35) we have

2
U ~n (n).u n (n)
(48) E(=) = n"¥2p U _.pV2p WLl . a7
n u=l n u=l n n

(offering a different verification of our limits for (12) and (13)).

Furthermore, in agreement with our remark after (37) we have
v 1 n (n) u3

| - u

| no L Tt 2

u=l n




Expression (48) also implies that the expected number of

transient states approaches « as n -+ = , i.e.

1 — — Un
: E(n-U)) = /nE(/n-— )+ =,
: /n
U
Additionally, var(-2 ) + 2 - n/2 confirming that var(U ) + =
/n

- as noted after (28). As for var(Vn) , using (28), it is clear that

“ n (n) (n)
BV = P g —Ee Do o
r=1 n r,s>1 n
r+s<_n

which is

- < E(V) + E(U))

\ < 2E(U,) since V < U .

Hence from (48) n'lE(Vﬁ) + 0 implying E(n—I/ZVn) + 0 and

thus that var(n'l/zvn) + 0 . Similar computation leads to var(Vn) + ©
We now establish that as n + @ , ECL + « , Consider

E(UV )= £ I r-
nn r=] s=]

E(Sn,r sn,s) ¢

From (10), (21) and (23)
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E(sn,r Sn,s) =
(n) (n)
r 2r _
r nr + n2r s T =8, 2r < n
(n)r
R r s IP=2s , 2r > n
n
Hence
(n) n (n)
EQu Vv,) = & ¢t fis, g r
r>1,s>1 n""® r=1 n°
r+s<n
which may be shown to be
(49) <n E(l_imli§_ﬂn) + E(U) .
n

Upon dividing by n both terms on the right-hand side of (49)
approach (¢ . For the first we use the boundedness of the argument
and (47) while for the second we use (48) again. As a result
n"'EQU_V_) + 0 so that from (46) ECL » = .

We next argue that the asymptotic distribution of Tn,r (1.e.

—345-) 1s Poisson with mean 1/r . The limits in (11) and (24)

encourage this possibility. It suffices to show that

(50) 1im [k!rkP(Tn

n -+ o ,I‘=k)"P(Tn =0)]=o’ k=132:"“

T
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From (40) and (41) we may write

n-kr (n) (u+kr)
- _ 1 u+kr
P(Tn,r k) = k!rk uzo g(r,0,u) nu+kr+1
Hence the left-hand side of (50) becomes
n (n) u n-kr (n) + (u+kr)
kr
1im [ T B(r,0,u) —2— - I B(r,0,u) d )

n s ® usl * e nttl o o *e nutkr+l

n-kr (n) (n), . n (n) u
kr u

= 1dm [ £ B(r,0,u)u( 4. u ) + L 8(r,0,u) —=
n + o yu=] nu+l nu+kr+l u=n-kr+l T nU+1

n-kr (n)
- kr ¢
u=0

utkr (n)kr(kr)
nu+kr+l nkr+1

1t 1s apparent that the limits of the second, third, and fourth

terms within the brackets are 0 . Since B8(r,0,u) <1 and since

n (n)uu n-a (n)uu
1im L = 1im I ——= =1
n + « y=a nu+1 n + o y=]1 nu+1

for any fixed positive integer a , the first term also tends to O

and we are done.
Summarizing, Tn p converges in distribution to a random varlable
>
Tr such that

e-l/r
P(Tr = t) = rtt! , t =0,1,2,...

(The limiting Poisson distribution when r = 1 was noted at the
beginning of section 3.)
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It is well-known that if X~ Py(A) , then E(X), = 3K (see

e.g. Johnson and Kotz (1969), p. 90) from which

k
E(x®) = £ S(k,Jn0d
j=1

where the S(k,j) are Stirling numbers of the second kind. Hence

K
(51) E(T. )X+ © sk,i)r

We calculate the left-hand side of (51) assuming n > k

n
k _ -k n \k
k
- '
<k g E ol

i

where € = {(kl,...,kn): k

|v

0, I k, =k}

i i y
¥
LN
But if exactly m of the k1 £0, E n(Drg“ = Pn,m,r given by
(29). Continuing then
k
k -k k!
E('.rn,r) r mfl Pn,m,r ;‘:f nkiz
m

where ﬁm denotes the subset of ﬂ on which exactly m of the ki's are> 0. But the sum

over ifm is merely the number of ways of placing k objects into
n cells such that exactly m are nonempty. This number is

(n)m S(k,m) (Riordan, p. 92) whence

k -k
E(T_ ) =rp 81 S(k,m)(n)m Pn,m,r




Using (30) we have

(52) 1im E(T )k = p K g S(k,m) L n(m m,) -
n-+ n,r m=1 ’ 1’ J

m,r

3
[(r-1)!9[ % (r-m):1°Y .
i=]

Denoting the sum over 9!; r by Ar m and equating right-hand
b4 ’

sides in (S1) and (52), we find the identity

k Kem k
(53) I S(k,m)r = I S(k,m)Ar m "
m=1 m=1 ’
Note that Al m = 1 reduces (53) to a triviality.
)
7. Summary

In the previous sections we have rather thoroughly described
the behavior of the cycle space of a randomly selected transformation
on a finlte set. Amongst the most interesting conclusions are the
"large set" results. We have demonstrated that with increasing set
size

(1) the expected number of cyclic states + = .

(11) the expected number of transient states + = .
(111) the expected number of cycles + = .
(iv) the likelihood that any particular state 1s cyclic = 0 .

(v) the expected number of cycles of length r + l/r .

(vi) the expected number of states on cycles of length r » 1 .

(vil) the expected cycle length + « .
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As a final remark, suppose the set of transformations 1is

restricted to be into a subset of X , say X' , having n' -elements.
After the first transition, all of the results of the preceding

sections apply with n' replacing n .
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